Encoding of global visual motion in the nidopallium caudolaterale of behaving crows.
نویسندگان
چکیده
Songbirds possess acute vision. How higher brain centres represent basic and parameterised visual stimuli to process sensory signals according to their behavioural importance has not been studied in a systematic way. We therefore examined how carrion crows (Corvus corone) and their nidopallial visual neurons process global visual motion information in dynamic random-dot displays during a delayed match-to-sample (DMS) task. The behavioural data show that moderately fast motion speeds (16° of visual angle/s) result in superior direction discrimination performance. To characterise how neurons encode and maintain task-relevant visual motion information, we recorded the single-unit activity in the telencephalic association area 'nidopallium caudolaterale' (NCL) of behaving crows. The NCL is considered to be the avian analogue of the mammalian prefrontal cortex. Almost a third (28%) of randomly selected NCL neurons responded selectively to the motion direction of the sample stimulus, mostly to downward motions. Only few NCL neurons (7.5%) responded consistently to specific motion directions during the delay period. In error trials, when the crows chose the wrong motion direction, the encoding of motion direction was significantly reduced. This indicates that sensory representations of NCL neurons are relevant to the birds' behaviour. These data suggest that the corvid NCL, even though operating at the apex of the telencephalic processing hierarchy, constitutes a telencephalic site for global motion integration.
منابع مشابه
Spatially Tuned Neurons in Corvid Nidopallium Caudolaterale Signal Target Position During Visual Search.
The avian pallial endbrain area nidopallium caudolaterale (NCL) shows important similarities to mammalian prefrontal cortex in connectivity, dopamine neurochemistry, and function. Neuronal processing in NCL has been studied with respect to sensory, cognitive, and reward information, but little is known about its role in more direct control of motor behavior. We investigated NCL activity during ...
متن کاملSensory and Working Memory Representations of Small and Large Numerosities in the Crow Endbrain.
Neurons in the avian nidopallium caudolaterale (NCL), an endbrain structure that originated independently from the mammalian neocortex, process visual numerosities. To clarify the code for number in this anatomically distinct endbrain area in birds, neuronal responses to a broad range of numerosities were analyzed. We recorded single-neuron activity from the NCL of crows performing a delayed ma...
متن کاملCross-Modal Associative Mnemonic Signals in Crow Endbrain Neurons
The ability to associate stimuli across time and sensory modalities endows animals and humans with many of the complex, learned behaviors. For successful performance, associations need to be retrieved from long-term memory and maintained active in working memory. We investigated how this is accomplished in the avian brain. We trained carrion crows (Corvus corone) to perform a bimodal delayed pa...
متن کاملAssociative learning rapidly establishes neuronal representations of upcoming behavioral choices in crows.
The ability to form associations between behaviorally relevant sensory stimuli is fundamental for goal-directed behaviors. We investigated neuronal activity in the telencephalic area nidopallium caudolaterale (NCL) while two crows (Corvus corone) performed a delayed association task. Whereas some paired associates were familiar to the crows, novel associations had to be learned and mapped to th...
متن کاملNeurons in the pigeon nidopallium caudolaterale signal the selection and execution of perceptual decisions.
Sensory systems provide organisms with information on the current status of the environment, thus enabling adaptive behavior. The neural mechanisms by which sensory information is exploited for action selection are typically studied with mammalian subjects performing perceptual decision-making tasks, and most of what is known about these mechanisms at the single-neuron level is derived from cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European journal of neuroscience
دوره 45 2 شماره
صفحات -
تاریخ انتشار 2017